6 Aplicação da oclusão implícita em silhuetas

Silhuetas desempenham um importante papel na compreensão de um dado volumétrico. Neste capítulo apresentaremos uma aplicação da oclusão implícita na geração de silhuetas.

6.1 Introdução

A silhueta de uma superfície S é formada pelos pontos $p \in S$ tal que $V.N_p = 0$ onde V é o vetor observador e N_p é a normal à superfície no ponto p.

Seguindo DeCarlo et al. (1), para o dado volumétrico podemos considerar uma superfície silhueta formada pelo conjunto de curvas silhuetas de todas as possíveis isosuperfícies para um observador fixo. A superfície silhueta seria a isosuperfície associada ao isovalor 0 da função $c(i,j,k) = -\nabla f(i,j,k).v(i,j,k)$. Assim, podemos encontrar a silhueta de uma superfície particular através do algoritmo de Marching Lines (13), que consiste no cálculo da interseção de duas funções implícitas: o da isosuperfície calculada pelo marching Cubes e a superfície de contorno, conforme ilustra a figura 6.1 de De Carlo et al. (1).

A desvantagem do método é que, se calcularmos todos os pontos onde n.v=0, teremos não apenas a silhueta exterior da figura, mas também a interior. DeCarlo et al. (1) propõe um método que evita renderizar porções não visíveis da silhueta, que consiste em traçar um raio do observador até cada vértice gerado na silhueta e verificar se há interseção com a isosuperfície ou não, examinando a interseção do raio com as faces do grid volumétrico. O autor menciona que o teste de visibilidade usado neste caso é oneroso.

Utilizando o método de oclusão implícita podemos reduzir o tempo de obtenção da silhueta exterior, já que estaremos calculando Marching Lines somente nos nós visíveis da octree. Visto que nosso algoritmo é conservativo, teremos silhuetas interiores na imagem, porém, quanto maior a profundidade da octree, melhor a qualidade do ocluder e portanto menos silhuetas internas serão visíveis, aproximando-se assim da silhueta real do objeto.

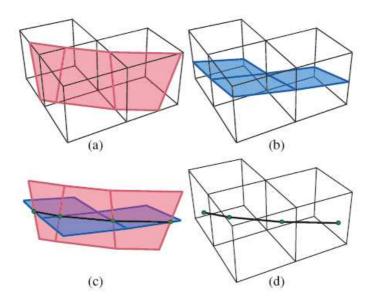


Figura 6.1: Marching Lines: (a) isosuperfície (b) superfície de contorno (c) interseção entre isosuperfície e superfície de contorno (d) silhueta.

6.2 Marching Lines

Para utilizarmos o algoritmo de Marching Lines, precisamos calcular primeiramente a isosuperfície através do algoritmo de Marching Cubes: Na aresta do cubo (P_i, P_j) em que houver mudança de sinal, utilizamos interpolação linear para encontrar o ponto P_{ij} que aproxima a isosuperfície:

$$P_{ij} = P_i \cdot t_{ij} + (1 - t) \cdot P_j$$
, onde t_{ij} varia de [0,1].

Guardamos a informação do t_{ij} de cada aresta em que há isosuperfície. O próximo passo é descobrir o valor de $g = V.N_p$ (onde V é o vetor da posição do observador e N_p é o vetor normal) em cada ponto P_{ij} do triângulo gerado pelo Marching Cubes, utilizando o parâmetro t_{ij} :

 $g_{ij}=g_i.t_{ij}+(1-t).g_j$, onde g_i e g_j são os valores de $V.N_p$ na aresta (i , j) em que há isosuperfície.

Verificamos em cada aresta do triângulo se há mudança de sinal de g. Se houver, podemos encontrar pontos em que g=0 através da interpolação linear. Repetimos o processo para as 3 arestas de cada triângulo da isosuperfície e assim, determinamos uma aresta que pertence a silhueta, conforme ilustra a figura 6.2.

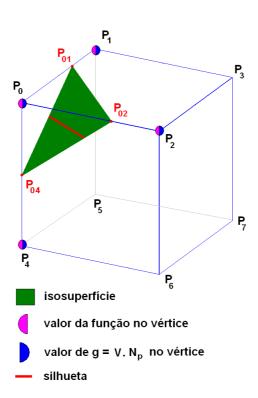


Figura 6.2: Verificamos em cada aresta do triângulo se há mudança de sinal de g.